3重積分について
定理
$D \subset \mathbb{R}^{2}$ を面積確定な有界閉領域とし，$\varphi_{1}(x, y), \varphi_{2}(x, y)$ を D 上の連続関粼 で，$\varphi_{1}(x, y) \leqq \varphi_{2}(x, y)\left(^{\forall}(x, y) \in D\right)$ とする。

$$
G=\left\{(x, y, z) \mid(x, y) \in D \cdot \varphi_{1}(x, y) \leqq z \leqq \varphi_{2}(x, y)\right\}
$$

とする。（このときGは体積確定）
$f(x, y, z)$ をG上の連続関数とすると，
2变数関数 $\int_{\varphi_{1}(x, y)}^{\varphi_{2}(x, y)} f(x, y, z) d z$ はD上連続で

$$
\iiint_{G} f(x, y, z) d x d y d z=\iint_{D}\left(\int_{\varphi_{1}(x, y)}^{\varphi_{1}(x, y)} f(x, y, z) d z\right) d x d y
$$

5.3 重積分における変数変換

定理5．11
（变数变換公式（2变数））
$D, \Omega \varepsilon \mathbb{R}^{2}$ の面積確定な有界閉領域とする。

写像 $\Phi: U \rightarrow \mathbb{R}^{2}$ を

$$
\Phi(u, v)=(\varphi(u, u), \psi(u, v))=(x, y), \quad(u, v) \in V
$$

で定める。

$$
J_{\Phi}(u, v)=\operatorname{det}\left(\begin{array}{ll}
\varphi_{u}(u, v) & \varphi_{v}(u, v) \\
\psi_{u}(u, v) & \psi_{u}(u, v)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial u} \\
\frac{\partial y}{2 u} & \frac{\partial v}{\partial v}
\end{array}\right) \quad \text { ¢する. }
$$

以下が成り立つとする。
（a）$D=\Phi(\Omega)=\{\Phi(u, v)=(\varphi(u, v), \psi(u, v)) \mid(u, v) \in \Omega\}$
（b）$N \subset \Omega$ となるある面積Dの集合Nが存在して，（ $N=\phi$ でもかまわない）

$$
(b-1) \text { 玉 は } \Omega \backslash N \text { 上|対1 }
$$

$$
(b-2)^{\forall}(u, v) \in \Omega \backslash N に \text { 対 } し 7, ~ J_{\Phi}(u, v) \neq 0
$$

このとき，D上の連続閏数 $+(x, y)$ に対して次が成立。

$$
\begin{aligned}
& \iint_{D} f(x, y) d x d y=\iint_{Q} f(\varphi(u, u), \psi(u, u))\left|J_{\Phi}(u, u)\right| d u d u \\
& J_{\text {里 }}(u, u) \text { を東のカコビ行列式ヌはカコビアンという. }
\end{aligned}
$$

（注意）
例えば，Nとして
－$N=\varnothing$（空集合）
（以後，空集合は面積Oの集合と約東する。）

- 面積確定集合 Ω の境界 $\partial \Omega$ やその一部
- Ω に含まれるC＇級曲線など，

例（平面での梅座標変換）

覚える。

$$
\begin{aligned}
A & =[0, \infty) \times[0,2 \pi] \\
& =\{(r, \theta) \mid r \leqq 0 \quad 0 \leqq \theta \leqq 2 \pi\} \text { とする. }
\end{aligned}
$$

明らかに $\Phi(A)=\mathbb{R}^{2} \uparrow$
（r，（ ）はAの中で考える。
D, Ω は $D \subset \mathbb{R}^{2}, ~ \Omega \subset A と な る$ 面皘確定な有界閉領域で，$D=\Phi(\Omega)$ であるとする。 このとき，D上の連続関数 $f(x, y)$ た対して，

$$
\iint_{D} f(x, y) d x d y=\iint_{\Omega} f(r \cos \theta, r \sin \theta) \frac{r}{1} d r d \theta
$$

（․）条件（a）はOK。条件（b）が成り立つことの確認
すはAの有界部分集合で1対1とは限らない。

$$
\begin{aligned}
& \left(\begin{array}{cl}
0 \cdot \forall \theta[0,2 \pi] & \Phi(0,0)=(0,0) \\
\cdot \forall r \geqq 0 & \Phi(r, 0)=\Phi(r, 2 \pi)=(r, 0)
\end{array}\right) \\
& \cdot J_{\Phi}(0,0)=0 \quad(\forall \theta \in[0,2 \pi]) \\
& C=\{(r, \theta) \mid r=0 \text { 又は } \theta=2 \pi\} \text { とすると. }
\end{aligned}
$$

玉はA $\mid C$ 上1対1で $J_{\mp}(r, \theta)=r \neq 0 \quad(\forall(r, \theta) \in A \backslash C)$
$N=\Omega \cap C$ とすると，Nは面積○である。
（＂空集合であることもありえる）

$$
\begin{aligned}
& \Omega \backslash N=\Omega \backslash C \subset A \backslash C \text { なので } \\
& \Phi は \Omega \backslash N 上 \mid \text { 対|で } \\
& \forall(r, \theta) \in \Omega \backslash C \text { に対して } J_{\Phi}(r, \theta)= r>0 \\
& \text { ゼロではない. }
\end{aligned}
$$

定理5．11より（＊）を得る。

例題

$$
\begin{aligned}
D= & \left\{(x, y) \mid a^{2} \leqq x^{2}+y^{2} \leqq b^{2}\right\} \quad(0<a<b) \text { とする. } \\
& \iint_{D} \frac{x^{2}}{x^{2}+y^{2}} d x d y \text { を求める. }
\end{aligned}
$$

－解答

$$
\begin{aligned}
& x=r \cos \theta, y=r \sin \theta \text { r } . \\
& \Omega=\{(r, \theta) \mid a \leqq r \leqq b, 0 \leqq \theta \leqq 2 \pi\} r す z . \\
& \begin{aligned}
\iint_{D} \frac{x^{2}}{x^{2}+y^{2}} d x d y & =\iint_{\Omega} \frac{r^{2} \cos ^{2} \theta}{r^{2}} \cdot r d r d \theta \\
& =\iint_{\Omega} r \cos ^{2} \theta d r d \theta \\
& =\int_{a}^{b}\left(\int_{0}^{2 \pi} r \cos ^{2} \theta d \theta\right) d r \\
& =\left(\int_{a}^{b} r d r\right)\left(\int_{0}^{2 a} \cos ^{2} \theta d \theta\right) \\
& =\frac{b^{2}-a^{2}}{2} \int_{0}^{2 \pi} \frac{1+\cos 2 \theta}{2} d \theta=\frac{\pi\left(b^{2}-a^{2}\right)}{2}
\end{aligned}
\end{aligned}
$$

一 例（線型変換）

$$
\begin{aligned}
& a, b, c, d \in \mathbb{R}, a d-b c \neq 0 r す る . \\
& (x, y)=\Phi(u, v)=(a u+b u, c u+d v) r す る 。 \\
& \mathbb{R}^{2} \text { での線型变換. }
\end{aligned}
$$

$$
\text { ヤコビアンは } \forall(u ; u) \in \mathbb{R}^{2} \text { に対して }
$$

$$
J_{\underline{\Phi}}(u, u)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\underset{\text { 定数 }}{a d-b c} \neq 0
$$

－$D, \Omega \subset \mathbb{R}^{2}$ は面積確定な有界閉領域で $D=$ 雨（ $\left.\Omega\right)$ であるとする。 $f(x, y)$ を D 上の連続関数とすると，

$$
\begin{equation*}
\iint_{D} f(x, y) d x d y=|a d-b c| \iint_{\Omega} f(a u+b v, c u+d u) d u d v \tag{I}
\end{equation*}
$$

ヤコビアンの直観的な意味。

$$
|s|,|t| \text { 十分小とする。 }
$$

\mid 平（I） \mid－ \mid 四有形 $P^{\prime} Q^{\prime} R^{\prime} S^{\prime} \mid$
三｜ $\overrightarrow{P_{Q}^{\prime}}$ と $\overrightarrow{P_{S}^{\prime}}$ で作られる平行四辺形 \mid
$=\left|\overrightarrow{P_{Q^{\prime}}^{\prime}} \times \overrightarrow{P^{\prime} \vec{s}^{\prime}}\right|$
$=\left|\left(\begin{array}{c}\varphi(a+s, b)-\varphi(a, b) \\ \psi(a+s, b)-\psi(a, b) \\ 0\end{array}\right) \times\left(\begin{array}{c}\varphi(a, b+t)-\varphi(a, b) \\ \psi(a, b+t)-\psi(a, b) \\ 0\end{array}\right)\right|$
$\varphi(a+s, b)-\varphi(a, b) \fallingdotseq \varphi_{u}(a, b) s$
$\varphi(a, b+t)-\varphi(a, b) \fallingdotseq \varphi_{u}(a, b) t$
みについても同様で
$=\left|\left(\begin{array}{c}\varphi_{u}(a, b) s \\ \psi_{u}(a, b) s \\ 0\end{array}\right) \times\left(\begin{array}{c}\psi_{u}(a, b) t \\ \psi_{u}(a, b) t \\ 0\end{array}\right)\right|$
$=\left|\operatorname{det}\left(\begin{array}{ll}\varphi_{u}(a, b) & \varphi_{v}(a, b) \\ \psi_{u}(a, b) & \psi_{u}(a, b)\end{array}\right)\right||s||t|=\left|J_{\Phi}(a, b)\right||I|$
dudu
い重樍分に対しても同様の変数变換公式が成立する。
例えば3重積分では，C＇級の变数变換
$(x, y, z)=\Phi(u, v, w)$ に対して定理5．11で $\mathbb{R}^{2} を \mathbb{R}^{3}$ に，面積確定を体積確定। ヤコビアンを

$$
J_{i}(u, u, w)=\left(\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial u} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial u}{\partial u} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial u} & \frac{\partial z}{\partial w}
\end{array}\right) \text { に变更して }
$$

$\iiint_{D} f(x, y, z) d x d y d z=\iiint_{\Omega} f(x(u, u, w), y(u, u, w), z(u, v, w))\left|J_{\Xi}\right| u, v, w| |$
が成立。
（fはD上の連䅧関数）
例（3 次元空間極座標变換）
变数变換
$x, y, z)=\Phi(r, \theta, \varphi)=(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$
こ考える。
$A=[0, \infty) \times[0, \pi] \times[0,2 \pi]$
$=\{(r, \theta, \varphi) \mid r \geqq 0,0 \leqq \theta \leqq \pi ; 0 \leqq \varphi \leqq 2 \pi\}$
で考える。
$\Phi(A)=\mathbb{R}^{3}$ である。

ヤコビアン

$$
J_{\Phi}(r, \theta, \varphi)=\operatorname{det}\left(\begin{array}{ccc}
\sin \theta \cos \varphi & r \cos \theta \cos \varphi & -r \sin \theta \sin \varphi \\
\sin \theta \sin \varphi & r \cos \theta \sin \varphi & r \sin \theta \cos \varphi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right)=r^{2} \sin \theta
$$

例
3次元球 $B=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leqq a^{2}\right\}(a>0)$ とすると，
$(B)=\iiint_{B} 1 d x d y d z=\iiint_{\Omega} 1 \cdot r^{2} \sin \theta d r d \theta d \varphi=\frac{4}{3} \pi a^{3}$
空間恼座標变換
$\Omega=\{(r, \theta, \varphi) \mid 0 \leqq r \leqq a, 0 \leqq \theta \leqq \pi, 0 \leqq \varphi \leqq 2 \pi\}$
5.4 多变数関数の広義積分

簡単のため，連続関数に対して考える。
（b）のような例として

$$
\begin{aligned}
& D=\left\{(x, y) \mid 0<x^{2}+y^{2} \leqq 1\right\} \quad f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}} \\
& D=\left\{(x, y) \mid x^{2}+y^{2}<1\right\} \quad f(x, y)=\frac{1}{\sqrt{1-x^{2}-y^{2}}}
\end{aligned}
$$

$D \subset \mathbb{R}^{2}$ とする（Dは必ずしも有界ではない）
\mathbb{R}^{2} の部分集合の列 $\left.3 D_{n}\right\}$ が D の近似列（又は近似増加列）であるとは以下が
成り立っことを言う。
（i）各 D $~$ は面積確定な有界閉集合である。（ $n=1,2, \cdots$ ）
（ii）$\forall_{n} \in N$ に対して $D_{n} \subset D_{n+1}$ かつ $D_{n} C D$
（つまり，$\left.D_{1} \subset D_{2} \subset D_{3} \cdots \cdots C D_{n} \subset D\right)$
（iii）ACDとなる任意の有界閉集合Aに対して

$$
\exists m \in \mathbb{N} \text { s.t. } A \subset D_{m}
$$

（ii）（iii）より

$$
D=\left\{\left.(x, y)\right|^{\exists} \in \mathbb{N} \text { s.t. }(x, y) \in D_{n}\right\}=\bigcup_{n=1}^{\infty} D_{n}
$$

（復習）
\mathbb{R}^{2} の集合の列 $\left.3 D_{n}\right\}$ が $D \subset \mathbb{R}^{2}$ の近似列であるとは
（i）各 D_{n} が面積確定な有界閉集合。
（ii）$\forall n \in \mathbb{N}, D_{n} \subset D_{n+1}, D_{n} \subset D$
（iii）$A \subset D$ となる任意の有界閉集合 A に対して，$\exists_{m} \in \mathbb{N}$ s．t．$A \subset D_{m}$近似列の例
（1）$D_{n}=\left\{(x, y) \mid x^{2}+y^{2} \leqq n^{2}\right\}$ とすると，$\left.\} D_{n}\right\} は \not \mathbb{R}^{2}$ の近似列
（2）$D_{n}=\left\{(x, y) \left\lvert\, x^{2}+y^{2} \leqq\left(1-\frac{1}{n}\right)^{2}\right.\right\}$ とすると

$$
\text { 3Dn3は・D }=3(x, y) \mid x^{2}+y^{2}<13 \text { の近似列. }
$$

定義
$D \subset \mathbb{R}^{2}$ は近似列をもつとする。
$f(x, y)$ をD土の連続関数とする。
Dの任意の近似列 $3 D_{n} 3$ に対して，極限值

$$
I=\lim _{n \rightarrow \infty} \iint_{D_{h}} f(x, y) d x d y
$$

$f(x, y)$ は Dで広義積分可能であるという。
このとき，極限值工を $f(x, y)$ のDにおける広義積分（又は広義重積分）
といい，

$$
\iint_{D} f(x, y) d x d y
$$

と表す。

定理 5.12
$P \subset \mathbb{R}^{2}$ は近似列をもつとする。
$f(x, y)$ はD上の連続関数で，
$「 \forall(x, y) \in D, f(x, y) \geqq 0$ 」又は，${ }^{-} \forall(x, y) \in D, f(x, y) \leqq 0 」 て ゙ あ る と す る 。 ~$
このときDのある近似列 3 D D_{n} に対して
極限 $\lim _{n \rightarrow \infty} \iint_{D_{n}} f(x, y) d x d y$

が存在するならば，$f(x, y)$ は Dで広義積分可能で，

$$
\iint_{D} f(x, y) d x d y=\lim _{n \rightarrow \infty} \iint_{D_{n}} f(x, y) d x d y
$$

が成り立つ。
証明

$$
\begin{aligned}
& f(x, y) \geqq 0((x, y) \in D) \text { のときに示す. } \\
& I_{n}=\iint_{D_{n}} f(x, y) d x d y, I=\lim _{n \rightarrow \infty} I_{n} \text { とする. } \\
& \text { このとき, } I_{1} \leqq I_{2} \leqq I_{3} \leqq \cdots!I_{n} \leqq \cdots \leqq I
\end{aligned}
$$

Dの他の近似列 $\left.3 E_{n}\right\}$ を任意にとる。

$$
J_{n}=\iint_{E_{n}} f(x, y) d x d y \text { とする. }
$$

－3 J 3 は增加列である $\left(f(x) \geqq 0, ~ E_{1} \subset E_{2} \subset \cdots \cdot ..\right)$

了Jnは上に有界な増加列となり，収東する。

$$
\begin{equation*}
J=\lim _{n \rightarrow \infty} J_{n} \text { とすると, (1) で } n \rightarrow \infty \text { として, J§I } \tag{2}
\end{equation*}
$$

（ ${ }^{(1)}$ で $\left.3 D_{n}\right\} と\left\{E_{n}\right\} を 入 れ$ 替えて議論すると，

$$
\begin{align*}
& \forall n \in \mathbb{N}, \exists m \in \mathbb{N} \text { s.t. } I_{n} \leqq J_{m} \leqq J \\
& n \rightarrow \infty \text { rすると. } I \leqq J \cdots \text { (3) } \tag{3}
\end{align*}
$$

（2）（3）より，$I=J$
従って $f(x, y)$ は Dで広義積分可能で，

$$
\iint_{D} f(x, y) d x d y=I
$$

例
（1）$D=\{(x, y) \mid x \geqq 0, y \geqq 0\}$ とするとき，

$$
\iint_{D} e^{-x^{2}-y^{2}} d x d y=\frac{\pi}{4}
$$

（2） $\int_{0}^{\infty} e^{-x^{2}}=\frac{\sqrt{\pi}}{2} \longleftarrow$ 1变数の広義積分
（1）$D_{n}=\left\{(x, y) \mid x \geqq 0, y \geqq 0, x^{2}+y^{2} \leqq n^{2}\right\}$ と す $z と$ ．
DんはDの近似列
－$e^{-x^{2}-y^{2}}>0$ なので，定理5．12より，

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \iint_{D_{n}} e^{-x^{2}-y^{2}} d x d y \text { を求めればよ } 11 \text {. } \\
& x=r \cos \theta, \quad y=r \sin \theta \text {, } \\
& \Omega_{n}=\left\{(r, \theta) \mid 0 \leqq r \leqq n, 0 \leqq \theta \leqq \frac{\pi}{2}\right\} \text { と } \partial z . \\
& \iint_{D_{n}} e^{-x^{2}-y^{2}} d x d y=\iint_{Q_{n}} e^{-r^{2}} \underline{r} d r d \theta \\
& f=\int_{0}^{n}\left(\int_{0}^{\frac{\pi}{2}} r e^{-r^{2}} d \theta\right) d r \\
& =\frac{\pi}{2} \int_{0}^{n} r e^{-r^{2}} d r=\frac{\pi}{2}\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{n}=\frac{\pi}{4}\left(1-e^{-n^{2}}\right) \\
& \rightarrow \frac{\pi}{4} \quad(h \rightarrow \infty) \\
& \iint_{D} e^{-x^{2}-y^{2}} d x d y=\frac{\pi}{4}
\end{aligned}
$$

（2）｜变数広義積分 $\int_{0}^{\infty} e^{-x^{2}} d x$ は収東する。
（․）$x \geqq$ ののとを， $0 \leqq e^{-x^{2}} \leqq e^{-x} \tau \cdot \int_{1}^{\infty} e^{-x} d x=e^{-1}$（収束））

$$
\begin{align*}
& \therefore \int_{0}^{\infty} e^{-x^{2}} d x=\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-x^{2}} d x \cdots \text { (1) } \\
& k_{n}=3(x, y) \mid 0 \leqq x \leqq n, 0 \leqq y \leqq n \cdot \text { とする。 } \\
& 3 k_{n} 3 \text { はDの近似列 } \\
& \iint_{k_{n}} e^{-x^{2}-y^{2}} d x d y=\int_{0}^{n}\left(\int_{0}^{n} e^{-x^{2}-y^{2}} d y\right) d x=\left(\int_{0}^{n} e^{-x^{2}} d x\right)^{2} \tag{2}
\end{align*}
$$

（1）（2）より，

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x^{2}} d x=\left(\lim _{n \rightarrow \infty} \iint_{k_{n}} e^{-x^{2}-y^{2}} d x d y\right)^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

3 K $\left.K_{n}\right\}$ はの近似列，$e^{-x^{2} \cdot y^{2}}>0$ なので，（1）より，

$$
\lim _{n \rightarrow \infty} \iint_{k_{n}} e^{-x^{2}-y^{2}} d x d y=\iint_{D} e^{-x^{2}-y^{2}} d x d y=\frac{\pi}{4}
$$

（3）より． $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
\qquad

例

$$
D=\left\{(x, y) \mid 0 \leqq x^{2}+y^{2} \leqq 1\right\} P>0 \text { とする. }
$$

広義積分 $\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{B}{2}}} d x d y$ が収東する。 $\Longleftrightarrow P<2$
証明

$$
f(x, y)=\frac{1}{\left(x^{2}+y^{2}\right)^{\frac{p}{2}}} \text { とする. }
$$

$p>0$ のとき，$f(x, y)$ はD上で連続だが，非有界
（特に， $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\infty$ ）

$$
D_{n}=\left\{(x, y) \left\lvert\, \frac{1}{n^{2}} \leqq x^{2}+y^{2} \leqq 1\right.\right\} \text { とする. }
$$

$\left\{D_{n}\right\}$ はDの近似式

$$
f(x, y) \geqq 0 \text { なので } \quad \lim _{n \rightarrow \infty} \iint_{D_{n}} f(x, y) d x d y \Longleftrightarrow P<2
$$

（＊）

を示せばよい。

$$
\begin{align*}
& x=r \cos \theta \quad y=r \sin \theta \\
& \Omega_{n}=\left\{(r, \theta) \left\lvert\, \frac{1}{n} \leqq r \leqq 1\right.,0 \leqq \theta \leqq 2 \pi\right\} \text { とする。 } \\
& \iint_{D_{n}} f(x, y) d x d y=\iint_{D_{n}} \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{p}{2}}} d x d y=\iint_{\Omega_{n}} \frac{1}{r^{p}} \cdot r d r d \theta \\
& =\int_{\frac{1}{n}}^{1}\left(\int_{0}^{2 \pi} r^{1-p} d \theta\right) d r=2 \pi \int_{\frac{1}{n}}^{1} r^{1-p} d r \tag{1}
\end{align*}
$$

－アキスのとき，

$$
\begin{aligned}
\int_{\frac{1}{n}}^{1} r^{1-p} d r= & {\left[\frac{1}{2-p} r^{2-p}\right]_{\frac{1}{n}}^{1}=\frac{1}{2-p}\left\{1-\left(\frac{1}{h}\right)^{2-p}\right\} } \\
& \longrightarrow\left\{\begin{array}{l}
\frac{1}{2-p}(p<2 \text { のとき) } \\
\infty(p>2 \text { のとき) }
\end{array} \quad(n \rightarrow \infty)\right.
\end{aligned}
$$

－$P=2$ のとき，

$$
\int_{\frac{1}{n}}^{1} r^{-1} d r=[\log r]_{\frac{1}{n}}^{1}=\log n \rightarrow \infty \quad(n \rightarrow \infty)
$$

これらと（1）より，（＊）が従う。

例
$D=\left\{(x, y) \mid x^{2}+y^{2} \geqq 1\right\}$ とする。
広義積分 $\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{p}{2}}} d x d y$ が収束する。 $\Longleftrightarrow p>2$

定理 5.13
$D \subset \mathbb{R}^{2}$ は近似列をもつとし，$f(x, y)$ をD上の連続関数とする。このとき，
（A）$f(x, y)$ は D 上広義積分可能
$\Longrightarrow(B)|f(x, y)|$ はD上広義積分可能
（ A ），（B）のいずれかが成り立つとき，

$$
\left|\iint_{D} f(x, y) d x d y\right| \leqq \iint_{D}|f(x, y)| d x d y<\infty
$$

注意
多変数の広義積分では収束と絶対収束が同値
1変数：収東するが絶対収束しない広義積分があった。
定理 5.14
$D \subset \mathbb{R}^{2}$ とL，Dは近似列をもつとする。
$f(x, y)$ をD上の連続関数とする。
以下を渪たすD上の非鱼の連続関数 $g(x, y)$ が存在するとする。
（i）$\forall(x, y) \in D, \quad|f(x, y)| \leqq g(x, y)$
（ii）$g(x, y)$ は D 上広義積分可能。
このとき，$f(x, y)$ はD上で広義積分可能で，

$$
\iint_{D}|f(x, y)| d x d y \leqq \iint_{D} g(x, y) d x d y
$$

証明
Dの近似列 $3 D_{n} 3$ を任意にとる。

$$
\text { (i). (ii), } g \geqq 0, D_{n} \subset D\left(\forall_{n} \in \mathbb{N}\right) よ り \text {. }
$$

$$
\begin{equation*}
\iint_{D_{n}}|f(x, y)| d x d y \leqq \iint_{D_{n}} g(x, y) d x d y \leqq \iint_{D} g(x, y) d x d y<\infty \tag{1}
\end{equation*}
$$

（1）と，$D_{1} \subset D_{2} C \cdots$ と． $1 f \mid>0$ より，
上に有界な増加列となり，収束する。
$|f(x, y)|$ はDで広義積分可能で，Dで $x \rightarrow \infty$ として，

$$
\iint_{D}|f(x, y)| d x d y \leqq \iint_{D} g(x, y) d x d y
$$

